Chase Joyner

901 Final Exam

December 15, 2017

Problem 1

Johnny's favorite cereal is having a contest. There are N distinct coupons and upon collecting all N coupons, you win a prize. Each day Johnny gets a new box of cereal and hence a new coupon. The probability of getting the i th coupon is $1 / N$. Let $T_{1}=1$ and for $n=2, \ldots, N, T_{n}$ be the day Johnny gets a coupon different from those obtained in days T_{1}, \ldots, T_{n-1}. Thus T_{N} is the day that Johnny gets all N coupons.
(a) Show that T_{N} is the sum of N independent geometrically distributed random variables.

Solution: Let X_{i} denote the number of the days it takes to obtain the i th unique coupon after having obtained $(i-1)$ unique coupons. Then X_{i} is geometrically distributed with probability $p_{i}=(N-i+1) / N$. Since each day is independent, we have the X_{i} 's are independent and clearly $T_{N}=X_{1}+\cdots+X_{N}$.
(b) Find the expected value and variance of T_{N}.

Solution: Utilizing the mean of geometric random variables based on trials,

$$
E\left[T_{N}\right]=\sum_{i=1}^{N} \frac{N}{N-i+1}=N h_{N}
$$

where h_{N} is the sum of the first N terms in the harmonic sequence. Now utilizing the variance of geometric random variables, by independence,

$$
V\left(T_{N}\right)=\sum_{i=1}^{N} \frac{1-p_{i}}{p_{i}^{2}}=\sum_{i=1}^{N} \frac{N i-N}{(N-i+1)^{2}}
$$

(c) Show that $T_{N} /(N \log N)$ converges in probability to 1 .

Solution: First note that

$$
\begin{aligned}
V\left(T_{N} /(N \log N)\right) & =\frac{1}{N^{2} \log ^{2} N} \sum_{i=1}^{N} \frac{N i-N}{(N-i+1)^{2}} \leq \frac{1}{N^{2} \log ^{2} N} \sum_{i=1}^{N} \frac{N^{2}}{(N-i+1)^{2}} \\
& \leq \frac{1}{N^{2} \log ^{2} N} \sum_{i=1}^{N} \frac{N^{2}}{i^{2}} \leq \frac{C}{\log ^{2} N}
\end{aligned}
$$

where $C=\sum_{i=1}^{\infty} i^{-2}$. Then, $V\left(T_{N} /(N \log N)\right) \rightarrow 0$ as $N \rightarrow \infty$. Now, consider

$$
\int_{1}^{N} \frac{1}{x} d x<h_{N}<1+\int_{1}^{N} \frac{1}{x} d x
$$

which is $\log N<h_{N}<1+\log N$. Thus $h_{N} / \log N \rightarrow 1$, implying $E\left[T_{N} /(N \log N)\right] \rightarrow 1$. Therefore, for $\epsilon>0$, there is an N large enough such that

$$
\left|E\left[T_{N} /(N \log N)\right]-1\right|<\epsilon / 2 .
$$

Thus, for any $\epsilon>0$,

$$
\begin{aligned}
P\left(\left|T_{N} /(N \log N)-1\right| \geq \epsilon\right) & \leq P\left(\left|T_{N} /(N \log N)-h_{N} / \log N\right| \geq \epsilon / 2\right) \\
& \leq \frac{V\left(T_{N} /(N \log N)\right)}{(\epsilon / 2)^{2}} \rightarrow 0
\end{aligned}
$$

proving that $T_{N} /(N \log N) \rightarrow 1$ in probability.

Problem 2

Suppose that X_{1}, X_{2}, \ldots are iid having expectation μ and variance σ^{2}. Let $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ so that $\sqrt{n}(\bar{X}-\mu) / \sigma$ converges in distribution to a standard normally distributed random variable. Let f be a continuously differentiable function. Use Skorohod representation to show that $\sqrt{n}(f(\bar{X})-$ $f(\mu)) /\left(f^{\prime}(\mu) \sigma\right)$ also converges in distribution to a standard normally distributed random variable.

Solution: By Skorohod's representation, there exists random variables Y_{n} and Y such that

$$
Y_{n} \stackrel{d}{=} \sqrt{n}\left(\frac{\bar{X}-\mu}{\sigma}\right), \quad Y \stackrel{d}{=} Z, \quad \text { and } \quad Y_{n} \stackrel{\text { a.s. }}{\rightarrow} Y,
$$

where $Z \sim N(0,1)$. Then, notice

$$
\begin{aligned}
\sqrt{n}\left(\frac{f(\bar{X})-f(\mu)}{f^{\prime}(\mu) \sigma}\right) & \stackrel{d}{=} \sqrt{n}\left(\frac{f\left(\mu+\sigma Y_{n} / \sqrt{n}\right)-f(\mu)}{f^{\prime}(\mu) \sigma}\right) \stackrel{d}{=} \frac{f\left(\mu+\sigma Y_{n} / \sqrt{n}\right)-f(\mu)}{Y_{n} \sigma / \sqrt{n}} \cdot \frac{Y_{n} \sigma}{f^{\prime}(\mu) \sigma} \\
& \stackrel{\text { a.s. }}{\rightarrow} f^{\prime}(\mu) \cdot \frac{Y \sigma}{f^{\prime}(\mu) \sigma}=Y \stackrel{d}{=} Z
\end{aligned}
$$

since $Y_{n} \sigma / \sqrt{n} \xrightarrow{\text { a.s. }} 0$ by the strong law of large numbers. This implies we have convergence in distribution, which completes the proof.

Problem 3

In this problem, we develop Stirling's formula.
(a) Use integration by parts to show

$$
\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-u^{2} / 2} d u \sim \frac{1}{\sqrt{2 \pi}} \frac{1}{x} e^{-x^{2} / 2}
$$

Solution: Using integration by parts, we have

$$
\begin{aligned}
\int_{x}^{\infty} e^{-u^{2} / 2} d u & =\int_{x}^{\infty} \frac{u}{u} e^{-u^{2} / 2} d u=-\left.\frac{1}{u} e^{-u^{2} / 2}\right|_{x} ^{\infty}-\int_{x}^{\infty} \frac{1}{u^{2}} e^{-u^{2} / 2} d u \\
& =\frac{1}{x} e^{-x^{2} / 2}-\int_{x}^{\infty} \frac{1}{u^{2}} e^{-u^{2} / 2} d u
\end{aligned}
$$

Noting that for large $x, \int_{x}^{\infty} \frac{1}{u^{2}} e^{-u^{2} / 2} d u \approx 0$, we conclude the result.
(b) Suppose X_{1}, X_{2}, \ldots are iid having expectation 0 and variance 1 and suppose that $a_{n} \rightarrow \infty$. Use the central limit theorem and part (a) to show that

$$
P\left(S_{n} \geq a_{n} \sqrt{n}\right) \sim \frac{1}{\sqrt{2 \pi}} \frac{1}{a_{n}} e^{-a_{n}^{2} / 2}=e^{-a_{n}^{2}\left(1+\epsilon_{n}\right) / 2}
$$

where $\epsilon_{n} \rightarrow 0$ if $a_{n} \rightarrow \infty$.
Solution: By the central limit theorem, we know that $\sqrt{n} \bar{X}$ converges in distribution to a standard normal random variable, i.e. $S_{n} / \sqrt{n} \rightarrow Z$, where $Z \sim N(0,1)$. Then, for large n,

$$
P\left(S_{n} \geq a_{n} \sqrt{n}\right)=P\left(S_{n} / \sqrt{n} \geq a_{n}\right) \sim \frac{1}{\sqrt{2 \pi}} \int_{a_{n}}^{\infty} e^{-u^{2} / 2} d u \sim \frac{1}{\sqrt{2 \pi}} \frac{1}{a_{n}} e^{-a_{n}^{2} / 2} .
$$

(c) Suppose $S_{n}=X_{1}+\cdots+X_{n}$ where the X_{i} 's are independent and each has a Poisson distribution with expectation 1.
(i) Show

$$
E\left[\left(\frac{S_{n}-n}{\sqrt{n}}\right)^{-}\right]=e^{-n} \sum_{k=0}^{n}\left(\frac{n-k}{\sqrt{n}}\right) \frac{n^{k}}{k!}=\frac{n^{n+(1 / 2)} e^{-n}}{n!} .
$$

Solution: Note that $S_{n} \sim \operatorname{Poisson}(n)$. Then, by law of total expectations,

$$
\begin{aligned}
E\left[\left(\frac{S_{n}-n}{\sqrt{n}}\right)^{-}\right] & =E\left[-\min \left(\frac{S_{n}-n}{\sqrt{n}}, 0\right)\right] \\
& =\sum_{k=0}^{n} E\left[\left.-\min \left(\frac{S_{n}-n}{\sqrt{n}}, 0\right) \right\rvert\, S_{n}=k\right] P\left(S_{n}=k\right) \\
& =\sum_{k=0}^{n}-\frac{k-n}{\sqrt{n}} \cdot \frac{n^{k} e^{-n}}{k!}=e^{-n} \sum_{k=0}^{n} \frac{n-k}{\sqrt{n}} \cdot \frac{n^{k}}{k!} .
\end{aligned}
$$

By induction, we can easily show that $e^{-n} \sum_{k=0}^{n}\left(\frac{n-k}{\sqrt{n}}\right) \frac{n^{k}}{k!}=\frac{n^{n+(1 / 2)} e^{-n}}{n!}$.
(ii) Show

$$
\left(\frac{S_{n}-n}{\sqrt{n}}\right)^{-} \xrightarrow{d} N^{-} .
$$

Solution: We know by the central limit theorem that $\frac{S_{n}-n}{\sqrt{n}} \xrightarrow{d} N(0,1)$. Now, since $g(x)=-\min (x, 0)$ is a continuous function, we have the result.
(iii) Show

$$
E\left[\left(\frac{S_{n}-n}{\sqrt{n}}\right)^{-}\right] \rightarrow E\left[N^{-}\right]=\frac{1}{\sqrt{2 \pi}} .
$$

Solution: Define $X_{n}=\left(\frac{S_{n}-n}{\sqrt{n}}\right)^{-}$. Since $X_{n} \xrightarrow{d} N^{-}$, by Skorohod's representation theorem, there exists random variables $\widetilde{X}_{n}=\left(\frac{\widetilde{S}_{n}-n}{\sqrt{n}}\right)^{-}$and \widetilde{N}^{-}such that $\widetilde{X}_{n} \stackrel{d}{=} X_{n}$, $\widetilde{N}^{-} \stackrel{d}{=} N^{-}$, and $\widetilde{X}_{n} \xrightarrow{\text { a.s. }} \widetilde{N}^{-}$. Also, see that

$$
E\left[\widetilde{X}_{n}^{2}\right]=\frac{1}{n} E\left[\left(\widetilde{S}_{n}-n\right)^{2}\right]=1
$$

Therefore, we have

$$
\int_{\left\{\tilde{X}_{n} \geq c\right\}} \widetilde{X}_{n} d P \leq \frac{1}{c} \int_{\left\{\tilde{X}_{n} \geq c\right\}} \widetilde{X}_{n}^{2} d P \leq \frac{1}{c} E\left[\widetilde{X}_{n}^{2}\right] \leq \frac{1}{c} \rightarrow 0
$$

as $c \rightarrow \infty$. This implies we have uniform integrability and hence may interchange limits with expectations. Finally,

$$
\lim _{n \rightarrow \infty} E\left[X_{n}\right]=\lim _{n \rightarrow \infty} E\left[\widetilde{X}_{n}\right]=E\left[\lim _{n \rightarrow \infty} \widetilde{X}_{n}\right]=E\left[\widetilde{N}^{-}\right]=E\left[N^{-}\right]
$$

which proves the result.
(iv) Show Stirling's formula, $n!\sim \sqrt{2 \pi} n^{n+(1 / 2)} e^{-n}$.

Solution: This follows immediately from part (i) and (iii).

Problem 4

Let X and Y be independent Bernoulli random variables on a probability space (Ω, \mathcal{B}, P) with $X \stackrel{d}{=} Y$ and $P(X=0)=P(X=1)=0.5$. Let $X_{n}=Y$ for $n \geq 1$. Show $X_{n} \xrightarrow{d} X$, but that X_{n} does NOT converge in probability to X.

Solution: First see that the distribution function for each X_{n} is

$$
F_{n}(x)=P\left(X_{n} \leq x\right)= \begin{cases}0 & x<0 \\ 1 / 2 & 0 \leq x<1 \\ 1 & x \geq 1\end{cases}
$$

which is the same as the distribution function for X. Thus, $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ for all x. However, for $0<\epsilon<1$,

$$
P\left(\left|X_{n}-X\right| \geq \epsilon\right)=P\left(X_{n} \neq X\right)=1 / 2
$$

for all n. Therefore, X_{n} does not converge to X in probability.

Problem 5

Suppose X_{1}, \ldots, X_{n} are iid exponentially distributed with mean 1 . Let

$$
X_{1, n}<\cdots<X_{n, n}
$$

be the order statistics. Fix an integer l and show $n X_{l, n} \xrightarrow{d} Y_{l}$, where $Y_{l} \sim \operatorname{Gamma}(l, 1)$. Try doing this (a) in a straightforward way by brute force and then (b) using the Renyi representation (exercise 32 on page 116) for the spacings of order statistics from the exponential density.

Solution: (a) Recall the formula for the l th order statistic is

$$
\begin{aligned}
f_{X_{l, n}}(x) & =\frac{n!}{(l-1)!(n-l)!}\left[F_{X}(x)\right]^{l-1}\left[1-F_{X}(x)\right]^{n-l} f_{X}(x) \\
& =\frac{n!}{(l-1)!(n-l)!}\left[1-e^{-x}\right]^{l-1} e^{-(n-l) x} e^{-x} .
\end{aligned}
$$

By the transformation theorem, we have

$$
f_{n X_{l, n}}(x)=\frac{(n-1)!}{(l-1)!(n-l)!}\left[1-e^{-x / n}\right]^{l-1} e^{-(n-l) x / n} e^{-x / n} .
$$

Note that for large $n, 1-e^{-x / n} \sim x / n$. Therefore,

$$
\begin{aligned}
f_{n X_{l, n}}(x) & =\frac{(n-1)!}{(l-1)!(n-l)!}\left[1-e^{-x / n}\right]^{l-1} e^{-(n-l) x / n} e^{-x / n} \\
& \sim \frac{(n-1)!}{(l-1)!(n-l)!}[x / n]^{l-1} e^{x} \sim \frac{x^{l-1} e^{-x}}{(l-1)!} \frac{n(n-1) \cdots(n-l+1)}{n^{l}} \\
& \sim \frac{x^{l-1} e^{-x}}{(l-1)!},
\end{aligned}
$$

which is a $\operatorname{Gamma}(l, 1)$ random variable.
(b) By Renyi representation theorem, we have $Y_{k}=X_{k, n}-X_{k-1, n} \sim \operatorname{Exp}(n-k+1)$. Note

$$
n X_{l, n}=n\left(Y_{l}+Y_{l-1}+\cdots+Y_{2}+X_{1, n}\right)=n Y_{l}+n Y_{l-1}+\cdots+n Y_{2}+n X_{1, n}
$$

and also $n Y_{k} \sim \operatorname{Exp}((n-k+1) / n)$ and $n X_{1, n} \sim \operatorname{Exp}(1)$. Observing MFGs of each $n Y_{k}$,

$$
E\left[e^{n Y_{k} t}\right]=\frac{(n-k+1) / n}{(n-k+1) / n-t} \rightarrow \frac{1}{1-t}
$$

which is the MFG of $\operatorname{Exp}(1)$. That is, $n Y_{k}$ and $n X_{1, n}$ converge in distribution to $\operatorname{Exp}(1)$, and it follows that $n X_{l, n} \xrightarrow{d} \operatorname{Gamma}(l, 1)$.

